Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter Held

Institut für Kristallographie, Universität zu Köln, Zülpicher Straße 49b, D-50674 Köln, Germany

Correspondence e-mail:
peter.held@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.022$
$w R$ factor $=0.062$
Data-to-parameter ratio $=21.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethylenediammonium tetraaquabis(sulfato)iron(II)

Received 24 February 2003
Accepted 27 February 2003
Online 31 March 2003

Comment

The title compound, (I), crystallizes isostructurally with the analogous manganese compound (Chaabouni et al., 1996). The Fe atom is surrounded by six O atoms of four $\mathrm{H}_{2} \mathrm{O}$ molecules and of two SO_{4} groups, forming a slightly distorted octahedron. The Fe atom is placed in special Wykoff position $1 a$ on an inversion centre. The structure is built of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{SO}_{4}\right)_{2}\right]^{2-}$ anions, in which the SO_{4} tetrahedron is vertex-linked to the central Fe^{2+} ion, sharing a common O atom (Fig. 1). Hydrogen bonds of mean strength from $\mathrm{H}_{2} \mathrm{O}$ molecules to O atoms $(\mathrm{O} 2$ and O 3$)$ of the SO_{4} groups interconnect neighbouring $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{SO}_{4}\right)_{2}\right]^{2-}$ anions, forming a three-dimensional primitive framework (Fig. 2). Placed at the centre of each interstice, $\left[\mathrm{NH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{3}\right]^{2+}$ cations form $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ bonds to six surrounding $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{SO}_{4}\right)_{2}\right]^{2-}$ anions. Every NH_{3} group bonds to two O atoms $(\mathrm{O} 1$ and O 2$)$ of two different SO_{4} groups and to one O atom (O 4) coordinated to iron. The organic ethylenediammonium cation is centrosymmetric with NH_{3} tails in a trans configuration. Both anion and cation show no deviation from the usual geometry and conformation.

Experimental

The title compound was prepared in the course of a systematic search for new 'double salts' of ethylenediammonium and divalent cations with various inorganic acids. It crystallizes from aqueous solution containing iron sulfate, ethylenediamine and sulfuric acid (in ratio 1:1:1), by slow evaporation at room temperature, in the form of yellow crystals with dimensions up to 4 mm .

Figure 1
ORTEPIII projection (Burnett \& Johnson, 1996) of the title compound showing the atom-numbering scheme. Non-H atoms are shown as 50% probability ellipsoids and H atoms are drawn as circles of arbitrary radii.

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=382.15$
Triclinic, $P \overline{1} \overline{1}$
$a=6.8350(3) \AA$
$b=7.1253(3) \AA$
$c=7.2235(4) \AA$
$\alpha=75.012(4)^{\circ}$
$\beta=72.355(4)^{\circ}$
$\gamma=79.185(4)^{\circ}$
$V=321.55(3) \AA^{\circ}$
$Z=1$
$D_{x}=1.974 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=12.3-19.3^{\circ}$
$\mu=1.56 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped, pale yellow
$0.25 \times 0.23 \times 0.21 \mathrm{~mm}$

Data collection

Nonius MACH3 diffractometer $\omega / 2 \theta$ scans
Absorption correction: ψ scan (MolEN; Fair, 1990)
$T_{\text {min }}=0.686, T_{\text {max }}=0.721$
4830 measured reflections
2660 independent reflections
2393 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.063$
$S=1.07$
2660 reflections
125 parameters
All H -atom parameters refined
$\theta_{\text {max }}=34.2^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 10$
$l=-11 \rightarrow 11$
3 standard reflections every 100 reflections frequency: 60 min intensity decay: -4.9%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0214 P)^{2}\right. \\
& +0.0617 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.74 \mathrm{e}^{\mathrm{A}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.190 \text { (6) }
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA).

$\mathrm{Fe}-\mathrm{OW} 1$	$2.1111(9)$	$\mathrm{S}-\mathrm{O} 1$	$1.4782(8)$
$\mathrm{Fe}-\mathrm{O} 4$	$2.1260(7)$	$\mathrm{S}-\mathrm{O} 4$	$1.4899(7)$
$\mathrm{Fe}-\mathrm{O} 2$	$2.1430(8)$	$\mathrm{C}-\mathrm{N}$	$1.476(1)$
$\mathrm{S}-\mathrm{O} 3$	$1.4649(8)$	$\mathrm{C}-\mathrm{C}^{\mathrm{i}}$	$1.513(2)$
$\mathrm{S}-\mathrm{O} 2$	$1.4699(8)$		

Symmetry code: (i) $1-x, 1-y,-1-z$.

Figure 2
Projection along [100] of the title compound, showing [SO_{4}] tetrahedra (yellow), $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{O}_{2}\right]$ octahedra (red), oxygen (blue), nitrogen (green), carbon (grey) and hydrogen (white) atoms. Hydrogen bonds (grey lines) interlink ethylenediammonium cations to different polyhedra.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} W 1-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.82 (2)	1.94 (2)	2.759 (1)	174 (2)
$\mathrm{O} W 1-\mathrm{H} 2 W 1 \cdots \mathrm{O} 1^{\text {iii }}$	0.83 (2)	1.91 (3)	2.741 (1)	176 (2)
$\mathrm{O} W 2-\mathrm{H} 1 W 2 \cdots \mathrm{O} 3^{\text {iv }}$	0.82 (2)	2.06 (2)	2.862 (1)	166 (2)
$\mathrm{OW} 2-\mathrm{H} 2 W 2 \cdots \mathrm{O} 3^{v}$	0.80 (2)	1.96 (2)	2.727 (1)	162 (2)
$\mathrm{N}-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{\text {vi }}$	0.87 (2)	2.08 (2)	2.887 (1)	154 (2)
$\mathrm{N}-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 4$	0.88 (2)	1.94 (2)	2.818 (1)	177 (2)
$\mathrm{N}-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O}^{\text {vii }}$	0.89 (2)	1.98 (2)	2.835 (1)	159 (2)

Symmetry codes: (ii) $-x,-y, 1-z$; (iii) $x, y-1, z$; (iv) $x, y, z-1$; (v) $1-x,-y,-z$; (vi) $1-x, 1-y,-z$; (vii) $-x, 1-y,-z$.

Data collection: MACH3 (Enraf-Nonius, 1993); cell refinement: MACH3; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2002) and ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Chaabouni, S., Kamoun, S., Daoud, A. \& Jouini, T. (1996). Acta Cryst. C52, 505-506.
Dowty, E. (2002). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Enraf-Nonius (1993). MACH3 Server Software. OpenVMS version. Nonius BV, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

