ISSN 1600-5368

Peter Held

Institut für Kristallographie, Universität zu Köln, Zülpicher Straße 49b, D-50674 Köln, Germany

Correspondence e-mail: peter.held@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.022 wR factor = 0.062 Data-to-parameter ratio = 21.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethylenediammonium tetraaquabis(sulfato)iron(II)

The title compound, $[(NH_3)_2(CH_2)_2][Fe(SO_4)_2(H_2O)_4]$, contains centrosymmetric $[Fe(H_2O)_4(SO_4)_2]^{2-}$ anions, with a coordination octahedron around iron(II) built up from four water molecules and two sulfate groups. The anions are linked by hydrogen bonds of medium strength, forming a three-dimensional framework. The linkage is reinforced by N– $H \cdots O$ bridges from the centrosymmetric $[NH_3(CH_2)_2NH_3]^{2+}$ cations, located in the centre of the interstices.

Received 24 February 2003 Accepted 27 February 2003 Online 31 March 2003

Comment

The title compound, (I), crystallizes isostructurally with the analogous manganese compound (Chaabouni et al., 1996). The Fe atom is surrounded by six O atoms of four H₂O molecules and of two SO₄ groups, forming a slightly distorted octahedron. The Fe atom is placed in special Wykoff position 1a on inversion centre. The structure is built of an $[Fe(H_2O)_4(SO_4)_2]^{2-}$ anions, in which the SO_4 tetrahedron is vertex-linked to the central Fe²⁺ ion, sharing a common O atom (Fig. 1). Hydrogen bonds of mean strength from H₂O molecules to O atoms (O2 and O3) of the SO₄ groups interconnect neighbouring $[Fe(H_2O)_4(SO_4)_2]^{2-}$ anions, forming a three-dimensional primitive framework (Fig. 2). Placed at the centre of each interstice, [NH₃(CH₂)₂NH₃]²⁺ cations form N- $H \cdots O$ bonds to six surrounding $[Fe(H_2O)_4(SO_4)_2]^{2-}$ anions. Every NH₃ group bonds to two O atoms (O1 and O2) of two different SO₄ groups and to one O atom (O4) coordinated to iron. The organic ethylenediammonium cation is centrosymmetric with NH₃ tails in a trans configuration. Both anion and cation show no deviation from the usual geometry and conformation.

Experimental

The title compound was prepared in the course of a systematic search for new 'double salts' of ethylenediammonium and divalent cations with various inorganic acids. It crystallizes from aqueous solution containing iron sulfate, ethylenediamine and sulfuric acid (in ratio 1:1:1), by slow evaporation at room temperature, in the form of yellow crystals with dimensions up to 4 mm.

 ${\rm (\!C\!\!\!\!C\!\!}$ 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

ORTEPIII projection (Burnett & Johnson, 1996) of the title compound showing the atom-numbering scheme. Non-H atoms are shown as 50% probability ellipsoids and H atoms are drawn as circles of arbitrary radii.

Crystal data

 $\begin{array}{l} (C_2H_{10}N_2)[Fe(SO_4)_2(H_2O)_4] \\ M_r = 382.15 \\ \text{Triclinic, } P\overline{1} \\ a = 6.8350 (3) \text{ Å} \\ b = 7.1253 (3) \text{ Å} \\ c = 7.2235 (4) \text{ Å} \\ \alpha = 75.012 (4)^{\circ} \\ \beta = 72.355 (4)^{\circ} \\ \gamma = 79.185 (4)^{\circ} \\ V = 321.55 (3) \text{ Å}^3 \end{array}$

Data collection

Nonius MACH3 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (*MolEN*; Fair, 1990) $T_{min} = 0.686, T_{max} = 0.721$ 4830 measured reflections 2660 independent reflections 2393 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.063$ S = 1.072660 reflections 125 parameters All H-atom parameters refined

Table 1

Selected geometric parameters (Å).

Fe-OW1	2.1111 (9)	S-O1	1.4782 (8)
Fe-O4	2.1260 (7)	S-O4	1.4899 (7)
Fe-OW2	2.1430 (8)	C-N	1.476 (1)
S-O3	1.4649 (8)	$C-C^{i}$	1.513 (2)
S-O2	1.4699 (8)		

Symmetry code: (i) 1 - x, 1 - y, -1 - z.

Z = 1 $D_x = 1.974 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 25 reflections $\theta = 12.3-19.3^{\circ}$ $\mu = 1.56 \text{ mm}^{-1}$ T = 293 (2) KParallelepiped, pale yellow $0.25 \times 0.23 \times 0.21 \text{ mm}$

 $\begin{array}{l} \theta_{\max} = 34.2^{\circ} \\ h = -10 \rightarrow 10 \\ k = -11 \rightarrow 10 \\ l = -11 \rightarrow 11 \\ 3 \text{ standard reflections} \\ \text{every 100 reflections} \\ \text{frequency: 60 min} \\ \text{intensity decay: -4.9\%} \end{array}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0214P)^2 \\ &+ 0.0617P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &< 0.001 \\ \Delta\rho_{\text{max}} &= 0.74 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.43 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ \text{Extinction coefficient: } 0.190 (6) \end{split}$$

Figure 2

Projection along [100] of the title compound, showing $[SO_4]$ tetrahedra (yellow), $[Mn(H_2O)_4O_2]$ octahedra (red), oxygen (blue), nitrogen (green), carbon (grey) and hydrogen (white) atoms. Hydrogen bonds (grey lines) interlink ethylenediammonium cations to different polyhedra.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} OW1 - H1W1 \cdots O2^{ii} \\ OW1 - H2W1 \cdots O1^{iii} \\ OW2 - H1W2 \cdots O3^{iv} \\ OW2 - H2W2 \cdots O3^{v} \\ N - H1N \cdots O1^{vi} \\ N - H2N \cdots O4 \\ N - H3N \cdots O2^{vii} \end{array}$	0.82 (2) 0.83 (2) 0.82 (2) 0.80 (2) 0.87 (2) 0.88 (2) 0.89 (2)	1.94 (2) 1.91 (3) 2.06 (2) 1.96 (2) 2.08 (2) 1.94 (2) 1.98 (2)	2.759 (1) 2.741 (1) 2.862 (1) 2.727 (1) 2.887 (1) 2.818 (1) 2.835 (1)	174 (2) 176 (2) 166 (2) 162 (2) 154 (2) 177 (2) 159 (2)

Symmetry codes: (ii) -x, -y, 1-z; (iii) x, y-1, z; (iv) x, y, z-1; (v) 1-x, -y, -z; (vi) 1-x, 1-y, -z; (vii) -x, 1-y, -z.

Data collection: *MACH3* (Enraf–Nonius, 1993); cell refinement: *MACH3*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 2002) and *ORTEP*III (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL*97.

References

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Chaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1996). Acta Cryst. C52, 505–506.

Dowty, E. (2002). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

- Enraf-Nonius (1993). *MACH3 Server Software*. OpenVMS version. Nonius BV, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.